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We study the flow of a heavy, viscous, possibly non-Newtonian axisymmetric jet of 
liquid of density p falling under gravity g into a lighter liquid of density p". If the 
change in the momentum of the entrained lighter liquid is neglected the jet will 
ultimately reach a modified Torricelli limit with a speed given by 

U(X) = [2$gx]i  

and an asymptotic radius 
a ( x )  = [ 2Q2 ]:, 

(SP lP)  9" 

where x is the downstream distance, Sp = p-p" > 0 and 2Q is the volume flow. An 
exact asymptotic solution perturbing the Torricelli limit with effects of surface 
tension, viscosity and elasticity is given in powers of x-i. An extended unsteady 
problem including effects of entrainment is formulated in terms of nonlinear ordinary 
differential equations which also account for weak radial variations of the velocity 
across the cross-section of the jet. These equations are solved in a boundary-layer 

a 1  
approximation which gives 

a(x)  1.171 (9'- 
(SP 9)i ' 

where ,i2 is the viscosity of the ambient fluid. Equation ( 1 )  is in agreement with 
experimental observations of jets of liquid into air. Equation ( 2 )  is in agreement with 
experimental observations of jets of liquids into liquids. 

1. Introduction 
A heavy, possibly non-Newtonian, liquid of density p is extruded from a pipe or 

vessel of radius a, into a lighter fluid of density p". It is assumed that flow in the jet 
is axisymmetric with velocity 

U(x, r )  = e, U(x ,  r )  + e, W ( x ,  r )  

and radius r = a ( x ) ,  where x increases downward in the direction of gravity (see figure 
1 ) .  It is further assumed that the viscosity of the jet is very much larger than the 
viscosity of the ambient fluid. This implies that the variation of U is determined by 
the internal dynamics of the jet, and ultimately, for large x, the accelerating jet will 
thin out and U(x,  T )  will become independent of r .  The falling jet will entrain ambient 
fluid, however, even if the viscosity ,12 of the ambient liquid is small, and the change 
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of momentum of entrained fluid will be very important if the density of the entrained 
liquid is not too small. Thus there are two cases: 

(i) the entrainment effect is not important - this case is realized perfectly for jets 
into vacuum, and it is realized in practice in the case of jets of liquid into air; 

(ii) the entrainment effect is important - this case is realized when liquids are 
extruded into liquids. 

The two cases are qualitatively different in that  the leading dynamical balances, 
in asymptotic regions, are between the relative weight of the jet per unit length and 
its change of momentum in case (i), and between the relative weight of the jet and 
the change of momentum of the entrained liquid in case (ii). Equations (1 .l) and (1.2) 
below show that there is a huge difference between these two cases. Our experiments 
show that both cases are realizable. 

We treat case (i) under the mathematical assumption that the ambient fluid is 
inviscid and dynamically passive. This means that the stress exerted on the heavy 
liquid by the light one is hydrostatic. The effect of the hydrostatic pressure is to reduce 
gravity g to (Sp/p) g,  where Sp is the difference in density. Thus, any result for flow 
of a liquid in air or a vacuum which depends on the gravity g also describes the flow 
in another (dynamically inactive) liquid when g is replaced with Spg/p. I n  the case 
of vertical jets into liquid we get the effect of gravity as a constant acceleration of 
the jet which reaches finally a terminal speed given by the asserted modification 
[2(Sp/p) gx]i of Torricelli’s formula (2gx)i. The radius of the jet must then get smaller 
and smaller, reaching ultimately the asymptotic radius 

We find a formally exact asymptotic solution of viscous, non-Newtonian equations 
in powers of xd. We work with a nonlinear jet-shape equation derived from the 
equation of motion. The same results follow from direct exact analysis of the 
governing partial differential equation. The algorithm for computing such an exact 
solution in the case of Newtonian jets into air was indicated by Kaye & Vale (1969), 
but they obtained only the first two terms of the asymptotic series. Kaye & Vale found 
that their asymptotic solution was good for an oil of low but not of high viscosity. 
For the high-viscosity oil they studied a nonlinear jet-shape equation (see (6.23)) 
which is a special case of (5.18) and got good agreements. They called the asymptotic 
method (11) and the method of integration of the jet-shape equation (I), and 
maintained that there was a strong distinction between the two methods. In  fact, 
their method (I) is the same as (11) when the surface-tension terms are added to (I) 
and x is large. Clarke (1969) treats viscous fluids with surface tension and he has 
derived the correct three-term asymptotic expansion (5.19). He uses a hodograph 
method with streamline coordinates, so his analysis, which is based on some 
unnecessary assumption about small parameters, and the expression of his results are 
less direct and appear to be less rigorous than our analysis shows they actually are. 

The fluid dynamics of the jet near the exit (say, within 2 or 3 diameters) is more 
complicated because the flow must adjust from a distribution compatible with flow 
in a pipe to flow in a jet. This problem is usually studied with g = 0 (see e.g. Trogdon 
& Joseph 1980, 1981). I n  this case the flow reaches a uniform velocity and a final 
swelled radius (larger than the pipe radius - much larger for some viscoelastic jets 
(see figures 2 e - g ) .  So the limit Sp -+ 0 might be expected to  coincide with the problem 
of die swell as i t  is usually formulated. There is nothing t o  accelerate the jet when 
the densities are matched and, in principle, the jet diameter will not vary downstream 
(actually the jet will eventually be destroyed by instabilities not considered here). 
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It is not uncommon to simulate g = 0 in experiments on die swell by density 
matching, but the idea behind that experimental technique can be erroneous if it 
neglects the effects of entrainment of the ambient fluid by viscous action. In  fact the 
rate of change of the momentum of the entrained fluid, which in any case is small 
if the density of the entrained fluid is small, can be large when density of the lighter 
liquid is comparable to the density of the liquid in the jet. I n  this case ( 2 )  the overall 
change of momentum produces smaller velocities and larger jets so that the swelled 
radius computed in case (1 )  for small values of 6p g may be much smaller than those 
that are actually observed. It could be said that there is a 'die swell' which is 
associated with entrainment of the ambient liquid. 

The dynamical effects of entrainment of ambient liquid by the jet are studied in 
996 and 7. We derive some nonlinear ordinary differential equations for jet problems 
which are axisymmetric but unsteady. These equations differ from approximate 
equations used in the problem of fibre spinning, and other thin-fluid filament 
problems in that the dynamics of the ambient liquid is represented and the equations 
allow at least for weak radial variations of the velocity and pressure a t  each axial 
station. In  $ 7  we treat the problem of entrainment by approximate methods in which 
the dynamics of the entrained liquid is presumed to be governed by boundary-layer 
equations, and the boundary-layer equations are studied by the method of Karman 
and Pohlhausen. We find that the boundary-layer thickness increases like l/a3 and 
that ultimately the jet radius is nearly constant and is given by 

The results from theoretical analysis seem to be in good agreement with observations 
reported in $ 2  and discussed in 995 and 8. 

2. Experiments 
I n  our experiments we extruded heavy liquids from a round pipe of radius r = a,, 

with vertical x-axis parallel to gravity, into lighter fluids of different densities p". The 
experiments were originally undertaken to study the problem of 'die swell' in 
non-Newtonian fluids. This led us to certain problems in understanding the influence 
of the ambient liquid on the dynamics of the jet. A partial resolution of these problems 
is established in the theory developed in the sequel. To motivate our theory it is 
perhaps best to report some details of the actual motions that we observed in our 
experiments. 

A sketch of a typical experiment is shown below in figure 1.  In this work the density 
difference p-p"> 0 is of crucial importance. We have normalized this density 
difference with the density p of the extruded liquid 

P-p" E E - .  

P 

I n  a vacuum p" = 0 and E = 1 ,  E w 1 when p" is for air and E is very small when the 
density p" of the lighter ambient liquid is close to p.  Unfortunately i t  is not possible 
to  find ambient fluids of intermediate density. We can extrude into a gas or a liquid. 
There is nothing in between. Fortunately, we can a t  least find liquids of different 
density so that different but small values E can be used to test our theory. 

We worked with jets of silicone oil and jets of an elvacite solution into air and into 
liquids of different density. The silicone oil is a Newtonian liquid which swells a little 
at the exit and the elvacite solution is a viscoelastic liquid which swells a lot a t  the 
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k 
FIGURE 1. Sketch of the falling jet. For large 5 the jet radius and 

the radial velocity tend to zero. 

Density Viscosity 
difference of ambient 
silicone 1 fluid 

Ambient fluid (g/cm3) ( C P )  

Air 0943 
I00 Yn alcohol 0161 1.2 
71 Yn alcohol/water 0068 2.3 
50 Yn alcohol/water 0.023 2.8 
40 yo alcohol/water 0005 & 0-002 2.9 

- 

TABLE 1 .  Densities and viscosities of the ambient fluid for jets of silicone oil 1 

exit. The elvacite solution was a 9.8% (by weight) solution of elvacite in diethyl 
malonate (DEM) and the elvacite itself is a polymethyl methacrylate polymer with 
a viscosity-average molecular weight of about 4 x lo5. First we shall list the values 
of the relevant physical parameters for the liquids used in the experiments: 

for silicone oil 1 
p = 10 P, p = 0.943 g/cm3, CT = 21.2 dyn/cm (into air); 

for silicone oil 2 
p = 125 P, p = 0.972 g/cm3, CT = 21.5 dyn/cm (into air). 

The silicone oil was injected into air and into various mixtures of water and alcohol. 
The viscosity of these mixtures was of the same order as the viscosity of water; that 
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Density Viscosity 
difference of ambient 
silicone 2 fluid 

Ambient fluid (g/cm3) (CP) 

100 yo alcohol 0187 1.2 

42 Yo alcohol/water 005  2.8 
35 yo alcohol/water 0023 2.8 
27 % alcohol/water 0014 2.5 

Air 0972 

66 yo alcohol/water 0102 2.3 

- 

TABLE 2. Densities and viscosities of ambient fluids for silicone oil 2. The density 
of the alcohol mixtures was determined by weighing of known volumes. 

Density Viscosity 
difference of ambient 

elvacite/DEM fluid 
Ambient fluid (g/cm3) (cP) 

25 % glycerol/water 0005 2 

Air 1.067 
Water 0067 1 

- 

TABLE 3. Densities and viscosities of ambient fluids for jets of elvacite 

is, many orders of magnitude smaller than the silicone oil. The density difference and 
viscosity for the various mixtures used in the experiment are given in tables 1 
and 2. 

For the elvacite solution 
,u (zero-shear viscosity) = 9 P, p = 1-067 g/cm3, B = 30.2 dyn/cm (into air). 

The elvacite was injected into air and into various mixtures of water and glycerol. 
The viscosity of these mixtures is also of the order 10+ P. The density difference for 
the various mixtures used in the experiment are given in table 3. 

We were unsuccessful in finding values for the interfacial tension of the silicone 
oil into liquid. Ring-tensiometer measurements fail in liquid-liquid cases in which 
the surface tension is too small to  measure. 

Some typical raw data for the experiments are the photographs reproduced in 
figures 2 ( a d )  (silicone 1 )  and Z ( e - g )  (elvacite/DEM). The mass-flow rate for all the 
silicone 1 experimentswas016 g/s (& = 1*6/2np = 0027 cm3/s)andforelvacite/DEM 
0.61 g/s (& = 0-091 cm3/s). A 1.78 mm inner diameter nozzle was used. The axial 
magnification of the true shape is different from the radial one owing to the curvature 
of the cylindrical container. The jet shapes are also plotted in figure 3 (silicone graph 
labelled [2], [3], [4], [5], [S]) and figure 4 (elvacite/DEM graph labelled [ Z ] ,  [3], [4]). 

The interpretation of the experiments is best deferred until we have established 
some theory. Direct comparison with theory can be found a t  the ends of $35 and 8. 
However, a t  this point i t  is perhaps useful to  remind the reader that  we are interested 
in the dynamics of the jet away from the pipe exit. 

In  the absence of gravity, E = 0 the jet attains a final uniform velocity U = U, and 
diameter a = a, (see e.g. Reddy & Tanner 1978; Trogdon & Joseph 1980, 1981). I n  
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(b  ) 

FIGTJRE 2 (a,  h ) .  For caption see p.  451. 
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FIGURE 2 ( c ,  d) .  For caption see p. 451. 
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cf) 

FIGURE 2 ( e :  f ) .  For caption see facing page. 
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k) 

FIGURE 2. Photographs of falling jets: (a)-@) silicone 1 ; (e)-(g) elvacite/DEM. 

r 

Swell ratio for Newtonian fluids 

I - 
0 5 10 1 5  20 25 

Y (cm) 

FIGURE 3. Jet shape for silicone oil 1 injected into air and various alcohol solutions: [l] equation 
(4.6); [2) ep = Sp = 0.943; [3) 0161; [4] 0068; [5] 0023; [6] 0.005. See table 1 for more information. 
The swell ratio a(oo)/a(O) for zero surface tension, gravity and Reynolds number is also indicated 
(a(oo)/ao = 1.113) (see Reddy & Tanner 1978; Trogdon & Joseph 1980, 1981). 

this problem there is an important exit region, of just a few nozzle diameters, in which 
the rearrangement of the velocity profile and the jet diameter to their final constant 
values is nearly complete. This exit region is clearly evident in the photographs in 
figure 2. We want to exclude this small complicated region near the exit from the 
rest, of the jet, which has a simpler dynamics. 

For the elvacite experiments, the swell near the pipe exit is in good agreement with 
Tanner’s (1970) prediction when injection is into air, but is about 30 yo greater when 
injection is into fluids other than air. The same effect is observed with other visco- 
elastic fluids tested and appears to increase with the elastic shear compliance of the 
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.“lI----’- 

(31 

~ viscoelastic fluid 

Newtonian fluid 
Swell ratio : 

-[*” “I- 

2 

1 

L I I 1 

5 10 15 20 25 

Y (cm) 

FIGURE 4. Je t  shape for elvacite/DEM injected into air, water and glycerol solution: [i] equation 
(4.6); [2) ep = Sp = 1.067 (into air); [3] 0067 (into water); [4] 0005 (into glycerol solution). See 
table 3 for more information. We observe a very large die swell in the experiments labelled [3], 
[4]. The die-swell ratios for Newtonian fluid (Reddy & Tanner 1978; Trogdon & Joseph 1980, 1981) 
and for viscoelastic fluid (Tanner 1970) are also indicated above. 

fluid. At one extreme, when e = 0, the flow a few diameters downstream is 
independent of r and x. At the other extreme, for jets of liquid into air with c x 1 
the initial swelling does not appear to reach its die-swell value a, because the effects 
of the acceleration of gravity in increasing U and decreasing a are manifest even quite 
close to the exit. On the other hand, jets of liquid into liquid are strongly influenced 
by the change of momentum of ambient liquid dragged along by the jet, and the 
velocities are slower and the jet radius larger than in the case of injection into air. 

3. Momentum of the jet and entrained fluid 
The equations governing the flow in the jet are 

U = ex U ( x ,  r )  +e, W(z ,  r )  (3.1 a )  

T = -PI + S (stress), (3.1 b )  

( 3 . 2 ~ )  

(velocity), 

a,(r w) + a,(ru) = 0, 

(3.2b) 

( 3 . 2 ~ )  

The same equations hold outside the jet. We use a tilde (0, f, f l  etc.) to designate 
variables in the fluid outside the jet. At the free surface r = a(x)  we require 
respectively that the normal component of velocity vanish and that jumps 
1 I] = ( ) - (”) in the velocity, the shear stress and the difference between jump in the 
normal stress and the surface-tension force (a = coefficient of surface tension) all 
vanish. When expressed in coordinate form these conditions may be written as 

Evil= 0, ( 3 . 3 ~ )  

W-a‘U = 0, (3 .3b)  

1 
r 

p(Wa,W+U& W )  =a,T,,+dxT,,+-(T,,-TT,,). 
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a'[T,, - a'T,,. + [T,, - a'T,,. = 0 ,  

[T,, + a12T,, - 2a'T,,] uJ' 
1 +a', aa' 

+ - = O ,  

453 

(3.3c) 

(3.3d) 

where J = a / (  1 + d2)4, and -pl is the stress of the ambient fluid on the jet. Equation 
( 3 . 3 ~ )  may be used to simplify (3.3d): 

(3.4) 
UJ' 

[T,, - a'q,~ + I = 0. 
aa 

We now introduce the head 
@ = p-pgx+A, (3 .54  

i6 = @--p"gx+flo, (3.5b) 

where fi,, is the pressure in the ambient fluid at the pipe exit at x = xa, and the extra 
stress S into our equations. Then, in the jet we have 

1 
r 

p(Wa,  U+ ua, U )  = a,(-@+S,,)+ -ar(rSrs), 

p(Wa,  W +  Ua, W )  = a,(-@+&)+a,S,,+ - ( srr - soo) j  

(3.6,) 

(3.6b) 
1 
r 

whilst on r = a(x) uun = 0, (3.7a) 

a'[rsrr - s,,] + (1 - cs,,n = 0, (3.7c) 

W-a'U= 0, (3.7b) 

UJ' 
- ~ ~ g x + ~ - ~ + + , , - ~ ~ s , , ~ +  I = 0. (3.7d) 

To determine the hydrodynamics of the jet far downstream we shall need to relate 
the extra stress and velocity. Analysis shows that, though the velocity becomes large 
ultimately like e, 0 < a < 3, strains decay at least like 2-8, p > 0. It therefore seems 
appropriate to use the small-strain-rate expressions S = PA, + a, A, + a2 A; of the 
fluid of second grade. Here ,u is the viscosity, 

A, = V U  +VUT, 

aa 

A, = (U . V) A,+ A,. V U +  (A,. VU)T, 
and a, and a2 are constants. I n  component form we have 

s r ,  = 2pa, w+a,pwa,, w+2ua,, w+a(a,. w)2 

+2(a, u)z+2ar ua, ~ ] + a , [ 4 ( a ,  w)z+(a, u+a, w ) q  (3.9a) 

w2 
r "1 r2 r2 

W so, = - +a, 2war-+2ua,-++4- +4a2-, 2,uw r ( r (3.9b) 

I n  $5  we will avoid making assumptions about the relation of stress to  deformation 
in the hope of obtaining good jet-shape equations for unsteady problems and other 
problems in which the assumption of a second-order fluid is not justified. 
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Equations (3.2), (3.6), (3.7) and (3.9) govern the motion a t  each point of the jet. 
We shall work with area-averaged equations expressing the conservation of linear 
and radial momentum of the jet derived (Joseph 1980) by integrating (3.6) across 
the cross-section of the jet, using (3.2) and (3.7). We get 

& 1 LpU2 + @ - S,,] r dr = a d [  - epgx + 61 + aJ' + u[fl,,, - dfl,,,,], (3.10) 

a'& 1 LpU W-S,,] r dr = aa'[epgx - 61 - aJ' + aa' [ f i r ,  - a'fl+.,] + a' [@ - Soel dr. J: 
(3.1 1 )  

Area-averaged momentum equations also hold outside the jet. Here we get 

(3.12) $1 w D 2  + 6 - fl,,.] r dr  = - u[fl,, + a'($ -fix,)], 

$ 1 Gmo- fl,J r dr = a[& - fir, + a'fl,.,] + (3.13) 

We may eliminate boundary terms by adding (3.12) to (3.10) and (3.13) to  (3.11). 

Thus 
m -{I d dx a 

b U 2 + @ - S x x ] ~ d r + ]  W@+6- f l xx] rdr]  = -epgxaa'+a;l', (3.14) 

"{ ~ a [ r W U - S , x ] r d r +  m @vD--fl,,]rdr] 

dx 0 a 
00 aJ' 

U a 
= epgxa- I + [ [@-Soo]dr+ 1 [6-fioo]dr.  (3.15) 

The terms involving ep = g(p-f l  > 0 drive the flow. The jet falls because it is heavy. 
But (3.14) suggests that  the dynamics of the jet can be strongly influenced by the 
change of momentum of entrained liquid outside the jet. 

4. Torricelli formulas 
We are going to obtain asymptotic formulas for the jet far downstream from the 

point xo of extrusion. For these large values of x, x-xo - z no matter what may be 
the (fixed) value xo. We get uniqueness of asymptotic formulas up to arbitrary 
translations of the origin of x. This type of lack of uniqueness comes from the fact 
that  @(x, r )  is determined by the global problem, and is only determined to within 
a constant by asymptotic analysis. In  fact the equations are invariant under the 
transformation 

I. ["'; ''1 ~ ["'x-2y;d"Yxo 

We are going to show that, if the ambient fluid is inviscid and dynamically passive, 
s = 6 = 0, there is a unique asymptotic solution that perturbs the Torricelli limit. 

The Torricelli limit arises for large values of x whenever the ambient fluid is inviscid 
and dynamically passive. To specify this limit i t  is convenient (but definitely not 
neccessary) to consider the 'inviscid' flow of the viscous jet. I n  such a flow, the fluid 
is viscous but the viscous terms in the equations aFe inactive, as in potential flow 
of a viscous fluid. The flow in the falling jet is not inviscid at any finite x, but i t  tends 
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to an inviscid flow as x + CO. Suppose that the fluid is really inviscid. Then, the extra 
stress S vanishes, and, if we also assume that = 0, (3.10) reduces to 

[[ (pU2+@)rdr] ’  = -epqxaa’. 

The Bernoulli equation for this flow (along streamlines) is 

where 
Q = r@) U(x ,  r )  r d r  

0 

is independent of x, and I Wt = olUI, U(x,r) --f ~ ( x )  as x -P co and a(x) -P 0. Hence in 
the limit 

C is a pure constant which may be absorbed into @ and hence put to  zero in (4.2) 
without losing generality. So (4.1) may be written as 

Q = $‘u. (4.3) 

[jl (&pu2-epqx)rdr = -cpqxaa’, (4.4) 1’ 
and, using (4.3), 

It follows now from (4.3) and (4.5) that  

u(x)  = (2sgx)) (4.6) 
is given by Torricelli’s formula, modified for buoyancy. We get the same solutions 
in $5  when x + 00, even for non-Newtonian viscous fluids. 

5. Perturbation of the Torricelli limit 
The asymptotic expansion for large values of x of the functions U(x ,  r ) ,  W ( z ,  r ) ,  

@(x, r ) ,  a(x)  describing the flow in the falling jet follows from the observation that 
the continual acceleration of the jet due to gravity, coupled to the condition that the 
mass flux is constant, forces the radius of the jet to contract as x increases. In the 
limit, for large values of x, the variation of U(x ,  r )  across the cross-section of the jet 
must tend to zero so that the leading terms are independent of r .  I n  fact, it is 
apparently possible to compute a unique asymptotic solution of (3.2), (3.7) with 
s = i6 = 0 and (3.9) in the form 

Y(x,r) = Cr2nq2,(x) = E r2n ki$x-tl--Cx@, 
n = 1  1 - 1  

where 

Equations governing the Sen(”)  are obtained by identifying independent powers of 
r in the equations that hold in the interior of the jet. At the boundary r = a(x) we 
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use the expansions for a(x) and g2n(x). Kaye & Vale (1969) also used the representation 
(5.1) in their study of Newtonian jets into air, but their actual calculation omits the 
effect of viscosity. We have carried out the identifications using (5 .1)  that are required 
to establish the asymptotic representations (5.19)-(5.23).  We are not going to display 
the identification, which is tedious; instead we use the integrated equations of 
momentum (3.10) and (3.11) to determine the autonomous equation (5.18) for a(x). 
We solve this equation in a series of fractional powers of x and then trace back through 
the derivation to obtain the other flow quantities. 

To obtain the equation governing the asymptotic expansion of a(x) for large x we 
first decompose the variables appearing in (3.10) and (3.11) as follows: 

+ r2 

( 5 . 2 ~ )  
(5 .2b)  

( 5 . 2 ~ )  

(5 .2d)  

(5 .2e)  

(5 .24)  
(5 .29)  
(5 .2h)  

The functions in the first two columns are of leadin order in powers of x-4 and the 

to r2 but the x-dependent functions of proportionality are of higher order. The 
assertions can be verified a posteriori. The volume flux 

functions in the last column are of higher order; f, 0, a , +also have terms proportional 

is a constant and 
fl(x) = 1: &(x, r )  r d r .  

Moreover 

Q2 = &4[u2(x) +a2u(x) Z(x)] +j2(x) = !ju2 V2(x, r )  r dr +f3(x), (5.4) 

where (5 .2)  and (5 .3)  define f2(x) and f3(x) uniquely. We compute 

(5.5) 
2pQ2 

a2 
1 [pU2 + @-A’,,] r d r  = - +b2[y(x) +h2y”(x) -r(x)] +.f4(x), 

-{e. d 2pQ2 + ~ 2 [ ~ ( x ) + ~ 2 y ” ~ x ) - r ( x ) l }  = -epgxaa’+va’+~6(x), 

wheref4(x) is uniquely defined by (5.4), ( 5 . 2 ~ )  and (5 .2d) .  Hence (3.10) becomes 

(5.6) dx  

wheref5 = J’(x)-j4(x). In  the same way, we compute from (5 .2c,e)  

1;’) r )  - s,,i dr = a ~ x )  + w ( X )  - e(x)i + ~ s ( x ) ,  (5.7) 

and using (5 .2a,  b , f )  

1 [pUW-S, , ] rdr  = -~pu(x)u’(x)a3(x)+f,(x). 



Je t s  into liquid under gravity 

Hence (3.1 1 ) becomes 
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d 
dx 

- tp - ( u i u ~ 3 )  = cpgxa - (T + a[? + h2y”- el + f . ( ~ ) ,  (5.9) 

where f8(x) = -f;(x)-?/u’. 
Turning next to ( 3 . 7 ~ )  with 6 = S = 0, we find that 

0- 

U 
cpgx+y+u2y” = R(x)+ - +fs(x), (5.10) 

wherefs is defined uniquely by ( 3 . 7 ~ )  and (5.2). From (5.9) and (5.10) we can solve 
for r” and find 

(5.11) 
* I d  
y = - -((a3 uu‘) +flO(X), 4a3 dx 

wherefl,, are all the higher-order terms that arise after elimination. Now, using (5.1 l), 
we write (5.9) as 

- Q ~ - ( U ~ U ~ )  = cPgxu+a[y+$a2y”-e]-a+fll. (5.12) 
d 

dx 

Using (5.12), we eliminate ~ + $ ~ r “  in (5.6), and, after simplification, find that 

(5.13) 

Using (5.2) and (5.9), we find that 

e-r = -3pu’-3011(uu’)’-3a2U’2+f13. (5.14) 

Hence 

2pQ2($) ’ -3{iX~u’+a~(uu’)’+a,(u’~)]a~}’-&[a(uu’a~)]’ = &pga2++aa’+fl,, 

(5.15) 

(5.16) 
2Q2 Finally we write u(x)=  7 -b2.ii.+f15, 

where .ii may be determined from the shear-stress condition (3.3b) written as 

2a.ii.-~u“-33a‘u’+f1, = 0. (5.17) 

Since the leading terms in U and a are of order xi and x-a respectively, ti is of order 
x-3. We can therefore use U(X) = 2Q/a2 in (5.15) without affecting the final result. It 
then follows from (5.15) that 

- 4pQ2u’ - &pga5 + 6pQ[a”a2 - u’~u] - 48a2 Q2 - - 2 - p: ~ ’ 3 1  a2 

[ U u’l a2 

a’”’ + 12a1Q2 a”’-13- +20- + ~ Q 2 ( ~ 2 ~ ” ’ - 5 ~ ’ ~ ” + 4 ~ ’ 3 )  = ~ ~ ( T u ~ u ’ + ~ ~ , ( x ) .  (5.18) 

We now set all of the fi(x) = 0, i = 1, 2, ..., 17. We solve the resulting equations 
as asymptotic power series in x f .  Then we can verify that everyfi(x) is of lower order 
than the last term retained. All the unknowns may be generated from (5.18), and (5.1) 
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has a unique solution in powers of x-f with leading term given by (4.5). This solution 
is exhibited as (5.19) 

R' R5+8R2R4/R1 +O(x-y), ( 5 . 1 9 ~ )  +-- 2Ri - 4#R2 R3 
-t Rfx i  32xy x3 

PQ 901, 81a, where 
R3=--, R --R1, R,=-R2. 

epg 4 -  16p 112p 

The coefficients R,, . . . , R, are positive and R, is probably positive. The function u ( x )  
and the leading term in C(x) can now be computed using (5.17) and (5.16). This gives 

C(x) = &x-:+O(z-t). 
2R; 

(5.19b) 

(5.20) 

Returning now to (5.10) and (5.11) we compute 

+ 4 e p g [ R 2 ( z  - 2) - ,]x-~+&Rfepgr-~+O(x-~), R2R3 (5.21) 

r" = r2[ -&epgx-'+ O(x-i)]. (5 .22)  

The error terms in (5.2) are 

= o  

Following Clarke (1968), we note that, when the distance y = x-xo from the point 
y = 0 of extrusion is introduced into (5.19), we get 

R R x R  
a=1+1-2L + O(y-f) 

Yi Y Yt  

asymptotically, for large y. This shows that the asymptotic solution is uniquely 
determined only up to the first two terms which contain the principal effects of inertia 
and surface tension. Other effects, like viscosity and extensional stresses, depend on 
the undetermined constant xo. In  the case of jets of liquid into air there is good 
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agreement between experiments and the y-f law for values of y some pipe diameters 
downstream of the pipe exit a t  y = 0. This good agreement is evident in the graph 
labelled [ 11 in figures 3 and 4 and in some results published by Scriven & Pigford (1959) 
and Kay & Vale (1969). 

The assumption 6 = s = 0 of this section is not good when E G 1 .  I n  this case the 
rate of change of the momentum of the ambient liquid entrained by the moving jet 
can be even larger than the change in the momentum of the jet itself. When p” is small 
( E  x l ) ,  however, as is the case with air, the momentum of the entrained fluid is small 
and does not strongly influence the observed dynamics. This is the reason why the 
analysis given in this section matches experiments on jets of liquid into air but not 
into other liquids. 

Even if we confine our discussion to the case of jets of liquids into air, i t  is necessary 
to maintain a distinction between the jet-shape equation (5.18) and the seven-term 
asymptotic (for large x) solution (5.19) of (5.18). The jet-shape equation and the 
improved jet-shape equations derived in $6 evidently apply in intermediate regions 
where the flow is not yet asymptotic. This was shown by Kaye & Vale (1969), who 
studied a special case of (5.18) for air ( p  x Sp) based on the assumption that r-variations 
of quantities on the left of (5.2) are zero and a, = a2 = 0. Then they integrated the 
resultingequation, with u = 0, subject to experimentally determined initial conditions 
for silicone oil into air. They got very good agreements for the jet shape in regions 
of not so large x where the asymptotic formulas fail. 

6. Area-averaged equations 
I n  $5 we used area-averaged equations to  derive the asymptotic form of solutions 

that perturb the Torricelli limit. Now we shall examine more general approximations 
which follow from area-averaging of the equations of momentum and the assumption 
of weak r-dependence. We again confine our attention to the axisymmetric case, but 
the flow may be unsteady. For unsteady flow we must add paU/at and pawlat to 
the left-hand side of (3 .2b,  c )  respectively. Moreover, the condition ( 3 . 3 b ) ,  which says 
that the jet surface is a streamline, is replaced with the kinematic condition 

aa w = - +a’U, 
at 

where the prime denotes differentiation with respect to  x. I n  the unsteady case we 
derive the following equations expressing the area-averaged balance of mass, axial 
momentum and radial momentum respectively : 

Now we make our basic approximation, which may be described, loosely, as 
applicable to  ‘thin ’ jets or filaments. More precisely, we shall work in to-be-determined 
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regions of the jet where variations of the axial velocity U(x,r , t )  and ‘pressure’ 
@(x, r ,  t )  are approximated by the first two terms of the expansion in powers of r2 
(see (5.2)). It will be enough to say that 

~ ( x ,  r ,  t )  - ~ ( x ,  t )  + rzi7(x, t ) ,  ( 6 . 5 ~ )  

~ ( x ,  r ,  t )  - ~ ( x ,  t )  + rz&(x, t ) ,  (6.5b) 

and that S(U) is determined by U alone. In this case we may reduce (6.2)-(6.4_) and 
(3.7b, c)-into five nonlinear equations in the five unknown functions U(x, t ) ,  o ( x ,  t ) ,  

The first step in the reduction is the determination of W corresponding to ( 6 . 5 ~ )  
@(z, t ) ,  W X ,  t ) ,  4% t ) .  

- 
W(x,r , t )  = -+rv‘(x,t)--30’(x,t). (6.6) 

using ( 3 . 2 ~ ) :  

Since U is now determined in terms of U(x,  t )  and 8 ( x ,  t ) ,  S[U] is also determined 
in terms of these two functions. For example the stresses in a fluid of second grade 
may be determined from (3.9). Sxx,  So@, S,, and SrX.r are polynomials in r2 with 
coefficients depending on x and t .  We may write in analogy to (5.2) that 

Combining the expressions (6.5)-(6.7) with (6.2)-(6.4), we get 

-a2+ a2U-t -17 = 0, 
at a [  a4 2 -1’ 

U N a2m+1 

= psgxa + @a + @a3 - c ~ Om - ,J’ + a[ - 6 + &, - a’flXr],- a. (6.10) 
2m+l a 

The interface conditions (3.7c, d )  reduce respectively to 
N N 

0 0 
a’Ca2m(S2m-rm)+ (1  -a’2)Ca2m+1rm = a’(g,.,-flZz)+ (l-a’2)flx., (6.11) 

- N  UJ’ 

aa 
psgx-@-u2&+ Za2m(S2m-aa’7m)+ = -&+~, , . -a r f l rx ,  (6.12) 

0 

In  the case of a Newtonian fluid N = 1 and 
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- 
It is evident that 6 may be elimin2ted from this system, leaving four equations for 
four unknown functions U(x , t ) ,  U(x , t ) ,  @ ( x , t )  and a(x , t ) .  We want to know the 
conditions under which these four nonlinear equations can give a good description 
of the dynamics of the jet. 

Special cases of the equations for jets of liquid in air (Sp = p, i6 = S = 0) which 
arise when &(x, t )  and 8 ( x ,  t )  are put to zero have been considered by various authors 
(Matovich & Pearson 1969; Pearson & Matovich 1969). In this r-independent case 

(6.13) 
we get a 

-a2+ [a2Q' = 0, 
at 

a -+w- [+qp u2 + CD - I-,)]' = -pegxaa' + a ~ ,  
at 

(6.14) 

(6.15) 
a J' 
at a' ' - p  -$3u- [ c 3  ( p  -.,)I ' = pegxu + @a -ae, - - 

a'(~,-r , )+(i-a~2)a7,  = 0, (6.16) 

-(€gx+CD)+SZ,-aa'7,+ 7 = 0, (6.17) 

where To, R,, 0, and 70 are determined by U(x ,  t ) .  Of course, i t  is not generally possible 
to solve theseJive equations for the three unknown functions U ,  @ and a. The common 
practice is to ignore (6.16) and (6.17). (In fact, the first four terms of the asymptotic 
expansions (5.10) and (5.20) correspond to  a solution which may be derived from 
(6.13)-(6.15) in the steady case and automatically satisfies (6.16) and (6.17) to  the 
order considered). 

U J  

aa 

I n  the steady case (6.13)-(6.15) reduce to  

Q = !&'U(x) = a constant independent of x ,  (6.18 a )  

[ ~ y p u 2 + ~ - r o ) 1 ~  = -pEgxaa'+uJ', (6.18b) 

UJ' (6.18 c) - [&3($UU- 7,)]' = pEgxa + @a - 0, a - 7. 
aa 

Eliminating CD, we find that 

For second-order fluids, satisfying (3.9), we get 

o,,-ro = -33CuU'+(a ,+a2)u2+OL~U~) ,  (6.20) 

7 0 = ~ U ' + a 1 [ U ' U - U U " ' ] - a 2 U ' U " } .  (6.21) 
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FIGURE 5. Jet shape for silicone oil 1 into air: ---, equation (4.6); -, numerical integration of 
(6.22) with the right-hand side set to zero and taking two observed values a(y = 1)  and a(y = 25) a8 
prescribed; + , experimental data. 

The average ‘extensional ’ stress for the steady jet in regions far downstream is given 
by (6.20). Equations (6.18)-(6.21) may be combined into one single nonlinear jet-shape 
equation for a(x). For Newtonian fluids we get 

(6.22) 

The nature of the simplification leading from the r-dependent equations (6.8)-(6.12) 
to (6.22) are such as to leave the region of validity of (6.22) obscure. Some authors 
(Kaye & Vale 1969) have treated (6.22) for the special case in which the right-hand 
side is negligible. The asymptotic analysis of $5 shows that the first four terms in 
the asymptotic expansion are asymptotic solutions of the equation arising from (6.22) 
when the right-hand side is set to zero. 

There are also some numerical results which suggest that  (6.22) is a valid equation 
under some circumstances. I n  particular, some good results have been obtained from 
(6.22) in two special cases of jets of liquid into air. Kaye & Vale (1969) integrated 

(6.23) 

numerically for experimentally given initial conditions u(x,) and u’(z,) measured on 
jets of silicone oil into air. They got good agreement between the numerical 
calculations and the observed jet shape. 

Kaye & Vale (1969) also did experiments with a Newtonian jet of low viscosity. 
But they could not get the jet shape from (6.23). (They should have included the 
surface-tension term 4J.) 

We have also integrated (6.23) for jets of silicone oil 1 into air (p = 10 P, 
ep = p  = 9.43, Q = 16 g/s, u = 21.2 dyn/cm). We use a two-point method for 
numerical integration, taking two observed values a, - and a,, 25 as prescribed (see 
figure 5 ) .  We get good agreement between the experimental shape and the computed 
one even in regions in which the asymptotic solution fails. But we did not succeed in 
getting numerical computations based on (6.23) to  agree with the jets of liquid into 
liquid because the momentum of the entrained liquid is important when the density 
of the ambient liquid is not small. 
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7. Boundary layers on the jet 
To assess the effects of viscous drag on the momentum of the jet we now consider 

the dynamical effects of the ambient fluid in a boundary-layer approximation. We 
shall suppose that the viscosity of the jet is much larger than the viscosity of the 
ambient fluid, as is true in our experiments. In  this case the shear of the ambient 
fluid may influence the momentum of the jet, but i t  does not induce strong variation 
of velocity across the cross-section of the jet. We shall further suppose that the 
ambient fluid is Newtonian and that the boundary layer is small in the sense that 
the pressure across i t  may be neglected. 

6 = 0, (7 .1)  

and x-derivatives are smaller than r derivatives. Then 

( 7 . 2 ~ )  

(7.2b) 

where v” = F/Pis the kinematic viscosity of the ambient fluid. We require that 
@ be continuous at the jet surface r = a(z)  and that a’(x) be small. 

and 

Using these approximations we may write 

and (3.10) becomes 

It now follows directly from (7 .2)  and the conditions 

B , @ - + o  as r+oO 

that  

(7.3) 

(7.4) 

Equation (7 .5)  says that the shear force a t  the jet surface is equal to the change in 
the momentum of the entrained liquid. 

Now we seek to determine the velocity and diameter of the jet far downstream 
where r-variations of CD = 4 and U = u ( x )  in the jet are negligible. Then to  leading 
order (3 .11)  may be written as 

qgxaa’ - (TJ’ + aa’y = 0, 
and (7 .4)  becomes 

(7.7) 

Q = SUCL~. 
When 
associated with (7.7) is 

= 0, we have the case studied in $4, and the leading asymptotic balance 

(7.8) 
d 

-pa2u2 = cpga2. 
dx 
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The right-hand side of (7.8) can be interpreted as the weight of the jet per unit length, 
and the left-hand side gives the change of momentum per unit length. 

We will show that, when ,,!i + 0, the leading balance is 

kpga2+,,!ia- au = 0. 
ar (7.9) 

Equation (7.9) expresses the balance between the weight of the jet per unit length 
and the shear tractions on the jet wall. 

We shall study the boundary-layer equations by a Karman-Yohlhausen method. 
First we evaluate (7.2) on r = a(.). We have 

u ( x )  = B(x,a(z))  

at7 a 0  
zc'(x) = - +a'- ax ar ' 

identically in x. Hence 

because W-a'u = O  a t  r = a. Now we construct an approximate 

(7.106, d )  

satisfying 
O(x, 8)  = 0,  O ( x ,  6)  = 0,  B(x,a) = u ( x )  (7.11a, b ,  c )  

( 7 . l l d )  

on r = a(%).  The conditions (7.11a-c) are satisfied by (7.10), and (7.11) holds if 

u'A2 A 
K2(x)  = __ - l + ;  

2; 

Asymptotically we find that Kz = O(x4) and 

K2(4 X A/% (7.12) 

where the neglected terms, computed a posteriori, are 0 ( 1 )  and O ( x 4 ) .  
Using (7.12) we find 

~ ( x ,  r )  x u ( x )  (1 -7)2 [ 1 + (7.13) 

an FQ ~ u - ( x , a ) = ~ u u ( x )  -- =-4--.  
ar Aa (7.14) 

The leading asymptotic balance (7.9) of momentum in the jet may now be written 
as 

WQ 
cpga3 ' 

A X -  (7.15) 
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FIGURE 6. Variation of jet radius with 6p: -, theoretical result, 

+, experimental data for elvacite/DEM at y = 25 cm; 0,  experimental data for silicone oil 1 at  
y = 25 cm. In these plots the origin is taken a t  the orifice. The data show a slope of -+, in agreement 
with theory. The theoretical line can be made to pass through the experimental points by shifting 
the origin of x. 

The balance of momentum of entrained fluid is given by (7 .5)  and may be evaluated 
using (7.13).  We first compute 

To leading order (A2Kt = O(x&) with neglected terms O(xi), a posteriori) this is 

Now, using (7.14) and (7.17),  (7.5) may be written as 

(7.17) 

(7.18) 
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FIGURE 8. Comparison of the jet shape of a liquid injected into another liquid: [l] theoretical, 

1.171pj@$ 
4 Y )  = y 2 0 .  

( E P d t  

[2]-[5] experimental data for silicone oil 1 injected into alcohol solution; [2] ~p = Sp = 0161 ; 131 
0068; [4] 0.023; [5]  0.005: [6], [7] experimental data for elvacite/DEM injected into water and 
glycerol solution ; [6] ~p = Sp = 0067 ; [7] 0005. In this figure the origin for the theoretical curve, 
which is arbitrary, is taken at the orifice. We count theory and experiments as being in agreement 
when i t  is possible to achieve agreement as y + co by changing the origin of y in [ 11. The theory agrees 
with experiments [2]-[4] (silicone oil 1 )  and [6] (elvacite/DEM). When Sp is very small (experiments 
[5] and 171) asymptotic regions are far from the orifice (eventually the accelerating jet must thin 
out). For [5] and 171, Sp = 0.005, the jet diameter has not yet entered a region of asymptotic 
dynamics suitable for comparison with [l]. 
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FIQURE 9. Variation of jet radius with ,C: -, theoretical, 

1.171p*@o 
= p;  

( W ) k X +  

+, experimental data for elvacite/DEM; 0, experimental data for silicone oil 1. Je t  radii are 
measured at  y = 25 cm (the origin of x is taken a t  the orifice). The data show a slope of approxi- 
mately b .  The theoretical line can be made to pass through the experimental points by shifting the 
origin of 2. 

and when the viscosity ,L of the ambient fluid is zero 

a w rgT. (7.19) 

The x-h decay is much slower than the xa decay, which must prevail at large x 
when,L = 0. Theasymptotic power sexhibitedin (7.18) are, however, anapproximation 
a t  best which is based on the notion that the dynamics of the entrained fluid may 
be treated by boundary-layer analysis, and that this analysis itself is adequately 
approximated by the Ktirman-Pohlhausen procedure. 

8. Comparison with experiments 

The following points of comparison between theory and experiment merit 
emphasis. 

(i) The experiment for jets of liquid into air are in good agreement with the 
Torricelli limit. The nature of these agreements has already been discussed at the end 
of $5 .  
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(ii) The theory predicts that the jet radius scales with (y, E = - - .  P-p" 
P 

This )-power singularity in the density difference holds uniformly in the viscosity ,&, 
even for ,& = 0. Therefore the )-power law is more robust than other features of the 
dynamics since it holds when the dynamics are dominated either by the changes of 
momentum of the jet (as in jets into a vacuum, or air) or by the entrained liquid 
outside the jet. The )-power law is in good agreement with our experiment 
summarized in figure 6. 

(iii) For large values of x the jet radius is proportional to 

The a = t results are verified for liquids into air, and u = t appears in the 
observations of liquids into liquids with E + 0. The rate of change of momentum of 
the jet (given by the first term of (7.7), which by itself leads to a = a) is still important 
a t  the largest values of x in the experiments. The shear-stress term, which is equal 
to the change of momentum of the entrained liquid, becomes more and more 
important as x is increased for fixed 6 or as E is decreased at a fixed x, with a(€) 
decreasing monotonically, apparently from to &. In  reservation, we note that the 
value a = 8 is not yet evident for the smallest E x 0.005 because the diameter of 
the jet was still increasing at the largest x for which the jet was stable (see figures 7 
and 8). 

(iv) The jet radius appears to scale with the b power of viscosity as predicted by 
(7.18) (see fig. 9). 

Experimental results for the silicone oil 2 are in the same measure of agreement 
with theory as those already displayed for silicone oil 1 and will not be displayed here. 

R E F E R E N C E S  

CLARKE, N. S. 1969 The asymptotic effects of surface tension and viscosity on an axially-symmetric 
free jet of liquid under gravity. Q.  J .  Mech. Appl. Math. 22, 247. 

JOSEPH, D. D. 1980 An integral invariant for jets of liquid into air. Arch. Rat. Mech. Anal. 74, 
389. 

KAYE, A. & VALE, D. G. 1969 The shape of a vertically falling stream of a Newtonian liquid. Rheol. 
Acta 8, 1 .  

MATOVICH, M. A. & PEARSON, J. R. A. 1969 Spinning a molten threadline, steady-state isothermal 
viscous flows. Ind. Engng Chem. Fund. 8, 512. 

PEARSON, J .  R. A. & MATOVICH, M. A. 1969 Spinning a molten threadline, stability. Znd. Engng 
Chem. Fund. 8, 605. 

REDDY, K. R. & TANNER, R. I. 1978 Finite element solution of viscous jet flows with surface 
tension. Comp. Fluids 6 ,  83. 

SCRIVEN, L. E. & PIGFORD, R. L. 1959 Fluid dynamics and diffusion calculations for laminar liquid 
jets. A.I.Ch.E. J .  5 ,  397. 

TANNER, R. I. 1970 A theory of die-swell. J .  Polymer Sci. 8, 2067. 
TROGDON, S. A. & JOSEPH, D. D. 1980 The stick-slip problem for a round jet. I. Large surface 

tension. Rheol. Acta 19, 404. 
TROGDON, S. A. & JOSEPH, D. D. 1981 The stick-slip problem for a round jet. 11. Small surface 

tension. Rheol. Acta 20, 1 .  


